On Modern Deep Learning and Variational Inference

نویسندگان

  • Yarin Gal
  • Zoubin Ghahramani
چکیده

Bayesian modelling and variational inference are rooted in Bayesian statistics, and easily benefit from the vast literature in the field. In contrast, deep learning lacks a solid mathematical grounding. Instead, empirical developments in deep learning are often justified by metaphors, evading the unexplained principles at play. It is perhaps astonishing then that most modern deep learning models can be cast as performing approximate variational inference in a Bayesian setting. This mathematically grounded result, studied in Gal and Ghahramani [1] for deep neural networks (NNs), is extended here to arbitrary deep learning models. The implications of this statement are profound: we can use the rich Bayesian statistics literature with deep learning models, explain away many of the curiosities with these, combine results from deep learning into Bayesian modelling, and much more. We demonstrate the practical impact of the framework with image classification by combining Bayesian and deep learning techniques, obtaining new state-of-the-art results, and survey open problems to research. These stand at the forefront of a new and exciting field combining modern deep learning and Bayesian techniques.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Noisy Natural Gradient as Variational Inference

Variational Bayesian neural nets combine the flexibility of deep learning with Bayesian uncertainty estimation. Unfortunately, there is a tradeoff between cheap but simple variational families (e.g. fully factorized) or expensive and complicated inference procedures. We show that natural gradient ascent with adaptive weight noise implicitly fits a variational posterior to maximize the evidence ...

متن کامل

Vprop: Variational Inference using RMSprop

Many computationally-efficient methods for Bayesian deep learning rely on continuous optimization algorithms, but the implementation of these methods requires significant changes to existing code-bases. In this paper, we propose Vprop, a method for Gaussian variational inference that can be implemented with two minor changes to the off-the-shelf RMSprop optimizer. Vprop also reduces the memory ...

متن کامل

Variational Inference on Deep Exponential Family by using Variational Inferences on Conjugate Models

In this paper, we propose a new variational inference method for deep exponentialfamily (DEF) models. Our method converts non-conjugate factors in a DEF model to easy-to-compute conjugate exponential-family messages. This enables local and modular updates similar to variational message passing, as well as stochastic natural-gradient updates similar to stochastic variational inference. Such upda...

متن کامل

Deep Hybrid Models: Bridging Discriminative and Generative Approaches

Most methods in machine learning are described as either discriminative or generative. The former often attain higher predictive accuracy, while the latter are more strongly regularized and can deal with missing data. Here, we propose a new framework to combine a broad class of discriminative and generative models, interpolating between the two extremes with a multiconditional likelihood object...

متن کامل

Semi-supervised Learning with Deep Generative Models

The ever-increasing size of modern data sets combined with the difficulty of obtaining label information has made semi-supervised learning one of the problems of significant practical importance in modern data analysis. We revisit the approach to semi-supervised learning with generative models and develop new models that allow for effective generalisation from small labelled data sets to large ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015